
www.manaraa.com

J Supercomput (2017) 73:2229–2257
DOI 10.1007/s11227-017-1966-1

Change-driven development for scientific software

Mariano Méndez1,2 · Fernando G. Tinetti2,3

Published online: 31 January 2017
© Springer Science+Business Media New York 2017

Abstract Scientific software production dates back to the days before the computer
science discipline obtained its own name. Over the past 76years, scientists have been
producing software, which means that most of the modern techniques and software
engineering methods available these days did not exist while part of this process was
taking place. Change-driven development was born as a new approach to maintain and
develop scientific software. Founded on the principles of software essence (change-
ability, complexity, intangibility, and conformity), integrated development tools, and
automated source code transformation. This new, agile approach takes change as a
working unit devised to drive the entire development process, which is performed in a
four-stage cycle. One of themost interesting approaches to apply change-driven devel-
opment on scientific software is to update, modernize and even parallelize sequential
programs that have been written 20 or 30years ago and are still running in produc-
tion environments. This process will be thoroughly described and implemented. Two
successful case studies will be presented and analyzed in depth.

Keywords Change-driven development · Scientific programming ·High performance
computing

B Fernando G. Tinetti
fernando@info.unlp.edu.ar

Mariano Méndez
marianomendez@fi.uba.ar

1 Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina

2 III-LIDI, Fac. de Informática, UNLP, La Plata, Argentina

3 Comisión de Inv. Científicas de la Prov. de Buenos Aires, La Plata, Argentina

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-1966-1&domain=pdf

www.manaraa.com

2230 M. Méndez, F. G. Tinetti

1 Introduction

The first attempts at scientific programming on computer machines were made in
the 1940’s and 1950’s by the computational simulation of nuclear explosions of
Von Newman [87], the ballistic trajectory computations of Dederick [26], the first
stored-program computer [17,74], and the first weather forecast that ran in a computer
based on Berjkess equations Jule Charney who performed the first automated regional
weather forecast on a computer in 1949. This model ran on the Electronic Numerical
Integrator And Computer (ENIAC) [30,54]. The only development process which was
known at the time was “Code and Fix.” Scientists had been producing software before
the term “software” was coined by Tukey [86], or the concept of “byte” being men-
tioned by Brooks, Blaauw, and Buchholz [15], or the waterfall development process
was created by Benington [11].

Nowadays, scientific programming is the ancient kind of software ever produced,
and most of it was built in Fortran. It is the most long-lived programming language
[4,56,60], which has been widely used by scientists to produce a profuse source code
ever since it came into existence; it has come to be known as the “de facto” scientific
programming language [6,43,72,76]. The first edition of the Fortran user manual was
published on October 15, 1956, by a team from IBM run by Backus [4]. Through-
out its long-lived existence, it has experienced a singular evolution which resulted in
this programming language to be the first one to be ever standardized [2,75], among
other things. Fortran has survived 60years of changes within the computer science, it
has adapted to programmers’ needs in keeping with the times and technology. While
according to “popular culture” of modern software development, Fortran is an out-
dated, fossilized, outmoded and obsolete programming language, its history and its
evolution proves the polar opposite by boasting a dynamic languagewhich has adapted
to the needs of programmers. In order to perpetuate these positive qualities this lan-
guage adopted a noteworthy evolutionary process that evolved on both fronts the
formal one through the standards, and the pragmatically one through the industry.
This process has been managed to maintain backward compatibility to such a degree
so that programmers can compile a Fortran 66 program by using any modern compiler
available.

One interesting affirmation about the role that scientific software plays has been
proposed by Judith Segal [62]. She asserts that scientific software acts as a medium
by which a erstwhile generation of scientists can transmit the knowledge encapsulated
in software to a next generation of scientists. This pronouncement reflects the hered-
itary and legacy nature of knowledge and software. Throughout the last six decades
computer science has evolved in a vast set of different fields including software engi-
neering [81]. If the evolution of scientific software is compared with other kinds of
software, it can be seen that the former has taken a different path in that it was slower
than the latter. Furthermore, scientific software not only seems to stay one step behind
other kinds of software but it also seems to have taken a totally different approach.
Some authors describe this phenomenon as the “gap,” the “chasm” between software
engineering and scientific computing [8,44,58]. In this article, a new approach for
scientific software development is introduced. This new technique has been called
change-driven development (CDD). This new idea is founded on Brooks’ four soft-

123

www.manaraa.com

Change-driven development for scientific software 2231

ware essence: changeability, complexity, conformity and invisibility; especially on
changeability [16]. Another fundamental approach that contributed to CDD founda-
tions is Ralph Johnson viewpoint “Since most programmers are working on software
that they did not start, their view of programming is that it is the process of converting
one version of software to the next. In other words, software development is program
transformation” [42], under this view point the idea that most software projects are
built from nothing could at least be considered naive, specially when working with
scientific software. change-driven development adopts change as a unit of work which
is based on automated and integrated analysis and transformation tools and uses an
iterative and incremental cycle to software development or maintenance.

In this article, change-driven development is introduced as an alternative software
maintenance and development process for scientific software building. The process is
thoroughly described and applied on an example.

The structure of this paper is as follows. Section 2 the theoretical docus and related
works are described. Section 3 describes the main features that characterize change-
driven development. Additionally, Sect. 4 presents a thorough descriptions of CDD
and their components. Sections 5 and 6 present two step by step examples of CDD
usage on Fortran source code. Finally, Sect. 7 presents conclusions and future work.

2 Theoretical focus

Traditional software development processes or the so-called plan-driven software
development processes that “approaches along a spectrum of increasing emphasis
on plans, ... In this context, the term “plan” includes documented process procedures
that involve tasks andmilestone plans, and product development strategies that involve
requirements, designs, and architectural plans” [13] seems not to be widely used or
at least frequently used by scientist to produce their software. One thought-provoking
assertion about the role that scientific software plays has been proposed in [62] by
Judith Segal. In this research work, it is asserted that scientific software acts as a
medium by which a former generation of scientists can transmit the knowledge encap-
sulated in software to a succeeding generation of scientists. This assertion reflects the
hereditary nature of knowledge and software. Additionally, it is important to note that
a set of statements claiming the existence of a gap, chasm or significant divergence
between scientific software production and commercial software production has been
found in bibliography. If the evolution of scientific software is compared with other
kind of software, it can be seen that the former has taken a different path in that it
was slower than the latter. Furthermore, scientific software not only seems to stay one
step behind other kind of software but it also seems to have taken a totally differ-
ent approach. Some authors describe this phenomenon as the “gap” or the “chasm”
between software engineering and scientific computing. The current software building
practices used by computational scientists often bear little resemblance with those pro-
moted by software engineers [8,20,28,37,44,79]. There exist a set of different reasons
to explain this fact, a possible one could be that it is commonly found that the role of
the end-user and programmer fall upon the same person [8,20,37,44,45,79,80,89].

123

www.manaraa.com

2232 M. Méndez, F. G. Tinetti

Even when hardware and computational power is growing at an ever accelerating
rate, computational science seems to be lagging behind [28,89]. Among some of the
alleged reasons for the aforementioned mismatch in scientific software development,
the complexity of the domain can be highlighted [79,80]. A second factor could be the
low value scientists ascribe to software developing knowledge and skills [8,20,79].
Third, lack of software engineering training and the horizontal quality of teaching,
where knowledge is passed down from scientist to scientist, both actors having the
same level of programming competence [8,89].

Also, scientists are somewhat reluctant to use and apply modern programming
tools such as integrated development environments (IDE) [8,19,20,89]. In spite of
the existing mismatch between software engineering and scientific computing, the
programs created by scientists tend to be successful [69,78].

2.1 Related works

The idea of applying automated transformation on existing source code to introduce
changes on it has been studied by software maintenance for years. It would be naive
to think that each new version of an existing program is built from the very beginning,
as a result it can be thought that “software development is program transformation”
[42]. Many development processes have been conceived to build software from noth-
ing, such as: the spiral software development process, the cascade model, the rational
unified process, among others. Under that premise, it is only logical to assume that
a software system is built from scratch. On the other hand, applying changes to an
existent program is called Software maintenance. The IEEE defines maintenance as
“Modification of a software product after delivery to correct faults, to improve per-
formance or other attributes, or to adapt the product to a modified environment” [40].
Taking into account this definition, software maintenance or software re-engineering
seems to be a especial case and has to be treated as an exceptionwithin the development
process [42]. In contrast with this declaration, it is widely studied that the maintenance
stage is the most resource consuming stage in a project, so it can be considered that
building software from the very start is an exceptional case of software development
and modifying preexistent software is the norm [42].

With its onset in the 1970’s, the maintenance stage began to acquire relevance
within the software development process. This stage has been divided into three dif-
ferent dimensions [82]. Toward 1972, an author described software maintenance as
an Iceberg, this is the start of the idea that software maintenance stage has hidden fea-
tures inside [18]. En 1976, E. Burton Swanson described three software dimensions
for maintenance [82]:

1. Adaptive maintenance: “Maintenance performed in response to changes in data
and processing environments may be termed adaptive maintenance. The timely
anticipation of environmental change is necessary to insure effective performance
of this type of maintenance.”

2. Corrective maintenance: “Maintenance performed in response to failures of the
above types may be termed corrective maintenance. Especially where processing

123

www.manaraa.com

Change-driven development for scientific software 2233

failures are concerned, a diagnosis of the causes of failure constitutes a significant
portion of the task for this type of maintenance activity.”

3. Perfective maintenance: “Maintenance performed to eliminate processing inef-
ficiencies, enhance performance, or improve maintainability may be termed
perfective maintenance. Its aim is to make the program a more perfect design
implementation. It is undertaken when “justified,” i.e., when the improvements to
be achieved outweigh the costs of making those improvements.”

A fourth dimension has been introduced in another research study, called Preventive
Maintenance: “the modification of a software product after delivery to detect and
correct latent faults in the software product before they become operational faults”
[41]. Formanyyears, researchers and the industry have focusedonfinding and studying
possible ways to improve the software development process and its maintenance stage
[51]. According to some research studies, software has been characterized by four
essential properties: complexity, conformity, changeability and invisibility [16] as
well as laws describing software evolution throughout time [50–52]. These properties
directly affect the process of software maintenance. This stage in the development
process has been taking relevance over the last years. Toward the year 1969, the
calculated percentage of effort required in the maintenance step, within the software
development process context, was between 40 and 60%. By 1978 [53], some authors
made reference to those numbers published in another research article on software
maintenance published by Rigs 10years before [73]. In 1979 the relative cost of the
maintenance stage according to [90] was near 67%, other research studies written
in this decade hinted that this value would come close to 70% [12]. Toward 1981,
the relative maintenance cost amounted to 50% in over 487 organizations, which
positioned this cost between 50 and 75% according to [55],remaining within those
levels according to [39,71] in the years 1988 and 1990, respectively. This trend was
regarded as a gradually falling value as from the 1990’s. Rather surprisingly, this
tendency continued on its upward trend and amounted to 75% of the total relative cost
[29]. It came to the point of reaching more than 90% of the total relative cost of project
[24,32,35,61,77,88]. Although it is true that all these values have been calculated
through different methods and techniques, it is also a fact that these numbers are also
undeniable proof of how costly, complex and important the maintenance process is.

We have not found a complete development process identified, integrated, imple-
mented, and tested on at least some example applications for scientific software
evolution/enhancement. We do not claim to provide a closed and absolutely complete
tool, but a proposal on a complete process with a proof of concept implementation,
showing several important details, including an integration on an existing IDE (Pho-
tran [22,63]) on which it would be possible to test the whole process. Furthermore, we
have selected an open source tool because we think the maintenance process can be
highly enhanced by different developers, each one providing specific implementation
details. Being the Fortran scientific software in production for decades, we think it
is important to have a specific process for enhancing, updating, and including new
optimizations and parallelization facilities in Fortran code.

123

www.manaraa.com

2234 M. Méndez, F. G. Tinetti

2.1.1 Software maintenance numbers

One of the fundamental aspects on which this work is based are the numbers derived
from software maintenance process. There are no instances of research work to esti-
mate the exact number of lines of source code in existence nowadays. Some estimations
are:

– G. Booch estimates that 1.000.000.000.000 of lines of source code new ormodified
were produced cumulatively between 1945 and 2005 with an annual increase of
35.000.000 of lines of source code. [14].

– Kontogiannis et al. [46] estimates the number of lines of source code at the begin-
ning of year 2000 was 800.000.000.000 in the entire world.

– Lammel in [47] also estimates the number of lines to be 1.000.000.000.000. 30%
of them written in COBOL (225 millions), 20% written in C/C++ (180 millions),
10% in Assembler (140 to 220 millions) and 40% written in other languages (280
millions).

The number of lines of source code in maintenance process was estimated to be
200.000.000.000 in 2001 by [32]. The software maintenance process cannot go unno-
ticed.The lackof information andup-to-date data on the software that is inmaintenance
process nowadays is unsettling.

2.2 Source code restructuring

Considering the cost and the complexity involved in the software maintenance stage,
researchers have focused, throughout these last years, on the improvement of software
development techniques and tools to be used in this process. In this research, the term
“restructuring” has been tracked back to its first possible use as a concept. According
to Arnold restructuring is defined as: “software restructuring is the modification of
software to make the software easier to understand and to change, or less susceptible
to error when future changes are made” [3]. A broader and more general definition
for source code restructuring is the one given by Chikofsky [23] in his work “reverse
engineering and design recovery: A taxonomy”: “restructuring is the transformation
from one representation form to another at the same relative abstraction level, while
preserving the subject system’s external behavior (functionality and semantics).” In the
definition provided by Chikofsky, that the source code restructuring should be viewed
as a transformation to be applied on the existent code to obtain another representation
is made clear. Inmost cases, this representation is better than its preceding one in that it
preserves both the abstraction level and the external behavior. According to Chikofsky,
the term restructuring covers a wide spectrum of transformations that do not only
serve as source code but they can also be used to transform data models, requirement
structures, and design blueprints. For instance, data normalization process is, to this
author, an exemplar of data transformation that implies improvements on the logical
data model [23].

Restructuring comes into being as a necessary process behind the implementation
of software maintenance due to its most essential characteristics (complexity, con-
formity, changeability, invisibility) [16] and with the purpose of reducing the costs

123

www.manaraa.com

Change-driven development for scientific software 2235

stemming from maintenance. At the same time, the inherent complexity of software
is exacerbated even further when the already existent software must undergo changes
of any of the following kind: corrective, adaptive,perfective or preventive. This cre-
ates a vicious circle that turns software increasingly complex to be handled. Bearing
in mind the aforementioned principles, restructuring has the objective, according to
certain viewpoints, of lessening software complexity through the implementation of
incremental improvements on its internal structure [3,36].

There exists a particular case in bibliography that refers to systems built under
the object-oriented programming paradigm which is also labeled as Refactoring. This
label is nothing but the same concept with a different name. Source code refactoring is
basically the object-oriented variant of restructuring [59] whose definition according
to Martin Fowler is: ‘the process of changing a [object-oriented] software system
in such a way that it does not alter the external behavior of the code, yet improves
its internal structure” [33]. A problem that is typically associated with source code
restructuring is the application of such restructurings manually. This manually applied
process tends to be costly and error-prone [36], as a result the application of automated
tools to carry out these source code transformations becomes paramount.

2.2.1 Restructuring or refactoring Fortran source code

One of the most salient features to Fortran is its longevity, its beginnings and the
first source code restructurings studies date back to the late 1960’s and early 1970’s.
Throughout its first stages there was an attempt to structure and restructure specifically
for Fortan source code called “spaghetti code” [5,25,31,34,38]. Over the last few
years, there have existed many research studies aimed at automatically restructuring
Fortran sequential source code by applying automated tools to fulfill the objective of
parallelizing it [7,27,27,49,70,83–85]. Other research studies have conducted Fortran
source code restructuring [65–68] by implementing such transformations as source
code refactorings. The approach proposed in this work will take advantage of AST
(Abstract Syntax Tree) transformations as implemented in previous works.

3 The change-driven development process

While there are several proposals (some of them unrelated to each other and with
different objectives) and implementations for Fortran source code transformations
and there is not a complete process, we have decided to propose this one. Actually,
we have worked for several years specifically on Fortran source code transformations
for high performance computing [84] and this proposal can be considered as resulting
from that experience and the related work mentioned above.

The approach, whose spirit entails accepting and embracing change, is the one at
use within the so-called light-weight or Agile Methodologies. Almost all of them ar
based on the “Manifesto for Agile Software Development” [10]. Agile methodologies
have been gaining momentum in the past two decades, such as XP, Scrum, Test-
Driven Development (TDD), to name but a few. Bearing in mind that changeability
and the continuous pressure to change are two essential features of software [16] and

123

www.manaraa.com

2236 M. Méndez, F. G. Tinetti

the maintenance process is the most resources-consuming stage within, the need to
define a change-driven software development process become a must. There exist
many development processes; yet, none of them is specifically based on the essential
feature of software: change for its own sake.

3.1 From the unknown to the well known

One of the initial tasks of the Fortran legacy software maintenance is focused on
understanding the software that is being dealt with. Although this assertion appears
to be trivial, it can become fundamental at the time that source code written by third
parties comes into play. This comprehension process becomes even more complex
when one is working with programs that are 20 or 30years old in that even the way
in which source code was written may be difficult to understand. Therefore, finding
a process that comes to exist out of the unknown is fundamental. The unknown, in
this case, is understood as Legacy Source code written by others. Such process should
leaveprogrammerswith awell known, comprehensible, readable andup-to-date source
code. It is sometimes troublesome to extract knowledge out of source code written by
another programmer easily as this code may be cryptic and intricate, among others. As
has been discussed above, new software development stemming from already existent
one is more widespread than the one started from scratch. In fact, building libraries
and components that can not be re-utilized would not make sense. Bearing in mind
that changeability and the continuous pressure to change are two essential features of
software [16] and the maintenance process is the most resources-consuming stage, the
need to define a change-driven software development [56] process becomes a must.
This approach, whose spirit entails accepting and embracing change, is the one at
use within the so-called light-weight methodologies. Almost all of them ar based on
the “Manifesto for Agile Software Development” which claims the following notions
[10] This vision toward software construction is considered to be an approach driven
by change as they run counter to the ones utilized by classic methodologies which
are driven by a plan. An important aspect in the light of this vision to be borne in
mind is that change should be viewed as an essential software feature [16]. Along the
same lines, the project development process is centered on two of the four essential
features of software [16]. To this end, this process should be guided by changes or
transformations to be applied on software. It can be stated then that a change-driven
development process is synonymous with a “Transformation-Driven Development.”
Although these two concepts seem to bear a high degree of resemblance throughout
this research study, this process will be referred to as “change-driven development”
or CDD.

3.2 Change-driven development process

A change-driven development Process could be thought of as an Agile Meth/-od/-
ol/-ogy when it comes to maintenance and scientific software development-related
purposes. There is a high likelihood that this process may be extended to any kind of
software. It is characterized by:

123

www.manaraa.com

Change-driven development for scientific software 2237

Fig. 1 Change as a working unit. a Unit of work, b core development activities and c list of changes

1. It is focused on change Given that change is one of the essential properties of
software [16] CDD possesses change as a minimal unit of work. One change is to
belong to one of these four characterizations: corrective change, adaptive change,
perfective change, preventive change. Thus, a single change will be the unit of
work in which several software development core activities will be performed:
requirement, analysis, design, implementation, testing, and deployment, as shown
in Fig. 1, where each one is identified by its initial letter (RADITD).

2. It is tool centered In this development process, tools are considered as important
as change itself. It is almost inconceivable to believe that nowadays software
can be constructed without making use of some kind of development tool. From
this perspective, tools are conceived of as a means to apply the process itself.
Programmers and other members of development teams must rely on such tools
for the purposes of identification, comprehension, transformation and software
verification.

3. It is an iterative and incremental process The concept of iterative and incremental
process came into being in the 1930’s and 1940’s out of the initial work conducted
byWalter Shewhart in the Bell Labs. The spirit of this concept involves performing
small cycles of “Plan-Do-Study-Act” [48]. This concept was later on revisited in
1940’s by a man who is considered the father of Quality W. Edwards Demings
[48], who put forward his famous cycle “Plan-Do-Check-Act.” Strangely enough
both author are considered the fathers of the modern concept of quality. Broadly
speaking, the spirit of this Iterative and Incremental Process resides in the building
of a problem solving skeleton and in the fulfillment of small work cycles (called
iterations). Out of performing these tasks, the solution to the problem will arise
out of the application of the process in its entirety [9].

Taking into account the features that a change-driven development process must
have, a first description of such process will be thoroughly described. Let us con-
template in this approach that a change is considered to be any variation in the state
of any artifact that is involved in the software development process. The concept or
vision of change or transformation is applicable to more artifacts other than source
code. This process can be performed either from an already existent list of changes
or a special iteration can be produced to obtain such list. As a following step, starting
from a change to be applied to the system, this process comprises four stagese: com-
prehension, transformation, verification, and feedback. Once these four stages have
been covered, a change will be applied into software. For this purpose, the central

123

www.manaraa.com

2238 M. Méndez, F. G. Tinetti

C H A N G E

Transform
ationC

om
pr
eh

ens
ion

Fe
ed

Ba
ck

V
erification

R A D I T D

Start

En
d

Fig. 2 A complete process cycle

core activities of software development (requirements, analysis, design, implementa-
tion, tests, and deployment) will be performed with different intensity in keeping with
this specific change; undoubtedly some other supporting activities will be performed
(documentation, management, software quality assurance, among others). At the end
of such process, the change will be introduced into the system, as shown in Fig. 2.

Within the four stages of the change-driven development software process, a specific
work flow has been defined. The work flow is viewed as the study of the operational
aspects of an activity in which some facets are focused on, such as how tasks are
structured, how tasks are performed, the sequence to be performed should be, how
they are synchronized. In this case, when working with scientific software, the defined
work flow comprises the following steps:

1. The establishment of an initial version of source code.
2. The transformation source code.
3. The verification of the obtained source code.
4. The validation of numerical results.
5. The acceptance/rejection of the applied change based on numerical results.
6. The documentation.

One fundamental feature of this process, as described above, entails the devel-
opment tools to be utilized. It is of utmost importance that the biggest number of

123

www.manaraa.com

Change-driven development for scientific software 2239

development tools available to be used are integrated in the same application. In other
words to perform an operation on the source code it may not be necessary to change
the current tool. For example, if it is necessary to run a source code analyzer, such
tool should be integrated in the same program in which the programmer is editing.
This assertion could seem trivial or insignificant but it is not unimportant. In the tool
review performed in previous studies, most of these tools were standalone or inde-
pendent programs. One distinctive feature of this kind of tools can be found in their
complexity. To perform such type of tasks using the search and replace technique may
not be fruitful.

4 The four stages

In the development process called change-driven development proposed in this
research work, four stages are clearly defined: (1) comprehension, (2) transforma-
tion, (3) verification, and (4) feedback.

4.1 Comprehension stage

This stage is intended to understand and comprehend the source code which is being
dealt with through the application of different development tools to such end. Some
examples about the type of information that these tools should provide are: symbol
table, static call tree, complex metrics (the longest, the most called, the most used
routine), code coverage, amongothers. In the case ofFortran,more specific information
about the programming language could be: common blocks areas, obsolete language
features utilization, number of entry points within a routine, number and type of
branch ofGOTO statement (conditional forward branch, conditional backward branch,
unconditional branch, among others). A list of changes to be applied to the source code
will be obtained as a result of this stage.

4.2 Transformation stage

In this stage, the application of source code transformations detailed in the list obtained
in the previous step that serves as a tool to improve and update such program will be
performed. These changes will be introduced through automated source code restruc-
turing tools that should be integrated and provided by the development environment.
In the same way as within test-driven development, tests become paramount; within
change-driven development, tools also become of utmost importance. In this stage,
the required test will be built in order to verify the changes.

4.3 Verification stage

In this stage of the process, the applied changes must be verified in order to ensure the
their correct application. It is important to highlight that the description of the process,
activities and tasks belonging to this stage are by themselves an entire research area
that exceeds the scope of this work. Regarding scientific software, verification involves
a numerical validation task of the program results.

123

www.manaraa.com

2240 M. Méndez, F. G. Tinetti

4.4 Feedback stage

This is the final stage (that every process should have) in which all the information
regarding the process should be collected, processed and used to provide feedback to
the next cycle of the process. This stage is also known as lessons learned or postmortem
analysis. Basically, metrics and relevant information that can contribute to improve the
process in the next iteration are collected. Additionally, in this stage, the list of changes
can be modified by adding other changes to be performed in the next iterations.

4.5 The work flow

In the following subsection, a thorough description for the steps proposed for the
work flow to be applied by change-driven development for scientific software will be
presented.

4.5.1 The establishment of an initial version of source code

In this stage, a clearly outlined point of departure will be settled to apply the defined
change. When working with preexistent source code, its current version will be fixed
as the starting point. In fact, this is an instance of handling of legacy code. If there
is no source code to work on, elicitation requirements and design techniques will be
applied in order to obtain an initial list of changes to be performed. It must be taken
into account that the starting point of the process is the absence of any kind of software
and the change to be applied would be the analysis and design of the requirements to
fulfill the program functionality.

4.5.2 The transformation source code

As a first task of this step, tests will be defined in order to verify that the source code
transformationwill be successfully carried out. The change defined in the previous step
should be taken as a starting point for the source code transformation to be performed.
Given the absence of source code, the design will be transformed into implementation
which will leade to the creation of the new source code. Such transformations will
be applied by using automated restructuring source code tools integrated within the
development environment for the former scenario, and for the latter (absence of source
code), the integrated development environment text editor will be used to implement
new source code.

4.5.3 The verification of the obtained source code

All the tests that have been built in the previous stage in order to verify the source
code transformed functionality must fulfill the initial requirements. Should any of
these tests fail in this stage, the previous stage must be performed again.

123

www.manaraa.com

Change-driven development for scientific software 2241

4.5.4 The validation of numerical results

In this step, scientific software should require a numerical validation. This validation
can be optional and it aims to contrast the obtained results with the expected ones.
Although this task could be performed by applying tests, a specific numeric validation
stage may also be required.

4.5.5 The acceptance/rejection of the applied change based on numerical results

Once the last two steps have yielded favorable results, they will be compared with the
criteria set in order to accept or reject the new product version.

5 First case study

In this section, an example written in FORTRAN extracted from the book Numerical
mathematics and computing [21] will be utilized. One relevant aspect of this example
lies in the fact that in a latter edition of the book, from 2003 [21], the author made
changes to his source code examples and updated them to a Fortran 90 version. In that
way, those transformations or changes applied by the author can be used as contrast
with the onesmade by the proposed process in this research. The FORTRAN77 version
of the programevaluates a function derivative at a certain point. This source code can be
seen in Fig. 3, and the list of changes to be applied to the following program comprises:
(1) Produce free format source code, (2) use lower-case Fortran statements, (3) use
lower-case identifiers, (4) introduce implicit none, (5) replace old style DO loops,
(6) remove unreferenced labels, (7) remove unnessesary statements, (8) add identifier
to end program, (9) generate variable/s from DATA in the main program, and (10)
generate parameter/s from DATA.

PROGRAM FIRST
C NUMERICAL MATHEMATICS AND COMPUTING, CHENEY/KINCAID, (c) 1985
C
C FILE : f i r s t . f
C
C FIRST PROGRAMMING EXPERIMENT
C

DATA N/25/ , H/1 .0/ , X/0.5/
F = SIN(X)
G = COS(X)
DO 2 I = 1 ,N
H = 0.25∗H
D = SIN(X + H) − F
Q = D/H
E = ABS(G − Q)
PRINT ∗ ,H,D,Q,E

2 CONTINUE
STOP
END

Fig. 3 FIRST.f source code

123

www.manaraa.com

2242 M. Méndez, F. G. Tinetti

PROGRAM FIRST
!
! NUMERICAL MATHEMATICS AND COMPUTING, CHENEY/KINCAID, (c) 1985
!
! FILE : f i r s t . f
!
! FIRST PROGRAMMING EXPERIMENT
!

. . . i d e n t i c a l sequence o f l i n e s as i n i t i a l v e r s i on

Fig. 4 Change 1

5.1 Process application

Taking into account the ten-changes list outlined above, an iterative process on of the
process for each change of the list will be carried out. A well-known version control
system tool, git, will be used, along with the Eclipse plug-in also known as Egit (http://
eclipse.org/egit/).

5.1.1 Change #1: Produce free format source code

The initial version of the source code is that of Fig. 3 and Once the initial version
has been set, the run output results of this version will be generated. After these steps
have been fulfilled, the commit of the initial version of the source code for the first
change/process iteration along with the results of such execution will be performed.

The Change to Free Format to be applied is closely connected to one characteristic
of Fortran that dates back to its very origins [2,4], which renders the source code hard
to read and understand. An additional important aspect is that fixed format allows for
spacing through statements or through a variable name, for instance “DO100I = 1, 10”
instead of “DO 100 I = 1, 10.” This language feature played its part, for instance, in the
failure of the space probe MARINER I. Even when this source code transformation
has been referred to as a “pretty printing” one, the previous statement indicates it is
not necessarilly the case.

The Transformation has been implemented as a Photran refactoring called “Change
to free format”. The approach at use can parse the instruction of the language correctly
aswell as conduct pre and postvalidations to ensure behavior preservation. Such source
code transformation has been implemented throughout this research study. It has been
included in the IDE tool menu option. A view with differences is displayed in order
to preview source code before and after changes. Along with this transformation, the
comment characters in keeping with the free format of Fortran 90 standard have also
been replaced. Actually, in this particular example, the new version of the program
only has different character comment lines as can be seen in Fig. 4.

The following step entails the verification and validations of the results. In this case
and due to the simplicity of the source code, it has not been necessary to write any type
of unit test. If any unit test has been written, it must be executed in order to ensure that
such change has not had an undesirable impact on software. The results of the program
execution having undergone a transformation/change are compared with their prior
version once the program execution results have been yielded. The numerical results

123

http://eclipse.org/egit/
http://eclipse.org/egit/

www.manaraa.com

Change-driven development for scientific software 2243

Fig. 5 Change 2 program FIRST
. . .
data N/25/ , H/1 .0/ , X/0.5/
. . .
do 2 I = 1 ,N
. . .
p r i n t ∗ ,H,D,Q,E

2 cont inue
stop
end

have not been altered after the transformation. The first iteration of the process has
been performed satisfactorily and, thus, it is committed.

5.1.2 Change #2: Use lower-case Fortran statements

The initial version of the source code as well as the numerical results have been
produced in the previous change, so they are directly available. This source code
transformation is needed because in older versions of Fortran, programmers had to
use only upper-case letters in their code. Such condition was removed from the Fortran
standards at least since Fortran 90 standard [1]. Furthermore, Fortran language does
not distinguish between reserved words and others identifiers. Programmers can find
variables whose names are the same as a language statements, such transformation
can not be performed by using a pattern matching or search and replace techniques.
This source code transformation has been implemented as a Photran refactoring by
traversing the program AST and by changing only those identifiers that fulfill the role
of a Fortran statement from upper-case to lower-case, as schematically shown in Fig. 5
(take into account the initial version of Fig. 3).

The numerical results are identical to the previous version, thus the change is
accepted and committed. Actually, this new source code version will be the initial
version for the next change, and this situation will be repeated for every successive
change/process iteration.

5.1.3 Change #3: Use lower-case identifiers

In this case, like in the previous iteration, the AST approach must be used to deter-
mine which names are identifiers and which names are program statements or literal
expressions. The source code transformation has been implemented in this research
work and contributed in the official Photran 8.1 distribution. Once the change has been
established and performed, the source code is ready to be compiled and the program
must be run in order to validate and verify the obtained numerical results. If a set of
unit tests exist, they must be run in this step. The numerical results obtained have not
shown any difference from the previous ones after the change has been applied. A
little bug that consists in variables within a block in the DATA statement has not been
modified in such transformation. In order to continue with the process, the bug was
reported and the remaining change was performed manually within the DATA block,
as shown in Fig. 6.

123

www.manaraa.com

2244 M. Méndez, F. G. Tinetti

Before Change

. . .
program FIRST
data N/25/ , H/1 .0/ , X/0 .5/
F = SIN(X)
G = COS(X)
do 2 I = 1 ,N
H = 0.25∗H
D = SIN(X + H) − F
Q = D/H
E = ABS(G − Q)
pr in t ∗ ,H,D,Q,E

2 cont inue
stop
end

After Change

. . .
program FIRST
data n/25/ , h /1 .0/ , x /0 .5/
f = SIN(x)
g = COS(x)
do 2 i = 1 ,n
h = 0.25∗h
d = SIN(x + h) − f
q = d/h
e = ABS(g − q)
p r i n t ∗ ,h , d , q , e

2 cont inue
stop
end

Fig. 6 Change 3

5.1.4 Change #4: Introduce implicit none

Implicit declaration of variables has been allowed since the first Fortran standard, and
it implies that a variable name serves as an identifier and at the same time as a type
definition: “The name employed to identify a datum or function carries the data type
association.” The implicit variable declaration carries a set of drawbacks such as bugs
introduced by: typing errors, wrong data type assignment, and values and range con-
trol, among others. Since it is desirable a programming approach not allowing implicit
declaration, the Fortran language has defined the implicit none statement, which forces
programmers to declare all variables specifying their data type. The source code trans-
formation will take advantage of the Photran VPG (Virtual Program Graph), which
contains the symbol table. The symbol table has the necessary information to deter-
mine the data type, whether a token is an identifier or not, and finally whether such
token has been implicitly or explicitly declared in order to modify the AST to be
compliant with the data explicit declaration.

Once the source code was applied, and as a result of the feedback stage, it was
noticed that variables were declared one per line. It may be interesting to introduce
a new automated source code transformation which allows programmers to group or
shrink a set of variable declarations split into different lines into a single line. Given
that this new source code transformation does not exist and is not implemented, such
shrinking will be manually performed. The resulting source code after introducing
implicit none by declaring variables is shown in Fig. 7.

The change was successfully tested because it produced the same output of the
previous version (which is the same as the original version, actually) and, thus, it is
accepted and commited as part of the process.

5.1.5 Change #5: Replace old style DO loops

One of the most interesting statements from the scientific computing view point is
precisely the DO statement. Basically, this statement usually performs more than the

123

www.manaraa.com

Change-driven development for scientific software 2245

Before Change

program FIRST
data n/25/ , h /1 .0/ , x /0 .5/
. . .

After Change

program FIRST
imp l i c i t none
r e a l : : d , e , f , g , h , q , x
i n t e g e r : : i , n
data n/25/ , h /1 .0/ , x /0 .5/
. . .

Fig. 7 Change 4

Before Change

. . .
do 2 i = 1 ,n
h = 0.25∗h
d = SIN(x + h) − f
q = d/h
e = ABS(g − q)
p r in t ∗ ,h , d , q , e

2 cont inue
stop
end

After Change

. . .
do i = 1 ,n

h = 0.25∗h
d = SIN(x + h) − f
q = d/h
e = ABS(g − q)
p r i n t ∗ ,h , d , q , e

2 cont inue
end do
stop
end

Fig. 8 Change 5

90% of the computing in a scientific application.There are many different syntactical
ways to write the same Fortran loop, such as

....
DO 110 I=1,10 DO 100 I=1,10 DO I=1,10
DO 100 J=1,10 DO 100 J=1,10 DO J=1,10
MATRIX(I,J)=0 100 MATRIX(I,J)=0 MATRIX(I,J)=0
100 CONTINUE END DO
110 CONTINUE END DO
....
(A) (B) (C)

Versions (A) and (B) preceed the structuring programming concept, especially the
(B) form, that is called Shared Do loop termination, and has been marked as obsolete
in the Appendix B of the Fortran 90 standard. One of the most desirable features that
source code should possess is that it must be easy to understand and easy to read.
This fact is especially important when working with source code to be parallelized
due to the fact that such parallelization is still performed (mostly) manually. In this
researchwork, an automated source code transformation that changes old Fortran style
Do loops into a more updated and structured format has been implemented [57]. This
automated source code transformation has been part of the Photran 6.0 distribution.
The source code transformation is schematically shown in Fig. 8.

Note that the code inside the Do loop is indented, so it becomes evenmore readable.
It is worth mentioning that the continue statement could be deleted in this stage, but
given that there are many different ways of using it in the context of Do loops (such

123

www.manaraa.com

2246 M. Méndez, F. G. Tinetti

Fig. 9 Change 6
Before Change

. . .
do i = 1 ,n

. . .
2 cont inue

end do
. . .

After Change

. . .
do i = 1 ,n

. . .
cont inue

end do
. . .

as in shared Do loop terminations) it has been decided to leave the continue to be
analyzed by another source code transformation: Remove Unnecessary Statements.
Old style Do loops are replaced successfully, since the program still generates the
same output, so this new version is committed and taken as the initial version in the
next change/iteration.

5.1.6 Change #6: Remove unreferenced labels

As a result of source code transformations some labels are not referenced anymore.
This is the case specifically after replacing old style Do loops have been removed:
the labels in continue statements or those in the statement with shared Do loop termi-
nation are probably not referenced anymore. Removing unreferenced labels has been
implemented in this research work as part Photran, and the result of the automated
source code transformation can be schematically seen in Fig. 9.

It has to be taken into account that every step toward removing labels is also a step
to avoid spaghetti code, since goto statements necessarilly need labels. Even when in
this simple case the analysis is straightforward, labels are hard to maintain/keep track
in many lines of code. The source code change has been verified as correct by running
the program and comparing the output with the original version.

5.1.7 Change #7: Remove unnecessary statements

In this stage, statements like continue and the final stop will be removed from source
code due to the fact that none of them provides functionality to the program. More
specifically, the continue statement is useles after replacing old style Do loops, where
they become equivalent to the assembly language instruction No Operation. The final
stop statement has been used in the oldest fortran standards as the last executable pro-
gram instruction before the end of the programdue to the fact that the end statementwas
not and executable statement until Fortran 90. This automated source code transforma-
tion has been identified trough the comprehension stage, and it is a good candidate to
be implemented in order to contribute to the tool. Due to the fact that this source code
transformation is not implemented, such transformation has been performed manually
by following the work flow proposed for change-driven development. The resulting
source code can be schematically seen in Fig. 10.

As expected, this source code transformation has not introduced any change in the
program behavior and, thus, the change is committed.

123

www.manaraa.com

Change-driven development for scientific software 2247

Fig. 10 Change 7 Before Change

program FIRST
. . .
do i = 1 ,n

. . .
cont inue

end do
stop
end

After Change

program FIRST
. . .
do i = 1 ,n

. . .
end do
end

Fig. 11 Change 8 Before Change

program FIRST
imp l i c i t none
. . .
end

After Change

program FIRST
imp l i c i t none
. . .

end program FIRST

5.1.8 Change #8: Add identifier to end program

As explained above, the end statement has not been considered an executable statement
until Fortran 90 standard. In addition, there did not exist any of these combinations:
end program, end function, and end subroutine. Adding the identifier to the end of
program helps in readability as well as being an initial step to add identifiers to the end
of functions and subroutines. The resulting source code is shown in Fig. 11, where an
indentation has been manually added.

5.1.9 Change #9: Generate variable/s from DATA in the main program

When a variable is declared within a DATA block, it implies that such variable has the
SAVE attribute except if the declaration of this variable is performed within a named
COMMON BLOCK. Variables with the SAVE attribute are equivalent to those of the
C language with the static attribute. The program variables n and h of the example
do not have any clear reason to be defined with the SAVE attribute, and they could
be initialized in an assignment. Taking into account that explicit variable declarations
have been made in Change #4: Introduce implicit none, there is only one more check
to be made: if the variables are assigned in the program, then they should be initialized
in the code, otherwise they are Fortran parameters. The resulting the source code
transformation, applied manually, can be seen in Fig. 12.

Even when this change has been applied manually, the implementation is rather
simple, since as explained in Change #4: Introduce implicit none, the VPG and more
specifically its symbol table can be used in order to identify how the variables are
used.

123

www.manaraa.com

2248 M. Méndez, F. G. Tinetti

Before Change

program FIRST
. . .
r e a l : : d , e , f , g , h , q , x
i n t e g e r : : i , n
data n/25/ , h /1 .0/ , x /0 .5/
. . .

end program FIRST

After Change

program FIRST
. . .
r e a l : : d , e , f , g , h , q , x
i n t e g e r : : i , n
data n /25/
x=0.5
h=1.0
. . .

end program FIRST

Fig. 12 Change 9

Before Change

program FIRST
. . .
data n /25/
. . .

end program FIRST

After Change

program FIRST
. . .
parameter (n = 25)
. . .

end program FIRST

Fig. 13 Change 10

5.1.10 Change #10: Generate parameter/s from DATA

The purpose of this source code transformation is to extract constant values from the
DATA statements. In this case, the identifier n could be considered a constant/Fortran
parameter. The Photran tool has already implemented and integrated this transforma-
tion, and the resulting source code can be seen in Fig. 13.

This last source code change was also successful: it did not introduce any program
output change and, thus, it is accepted and committed.

5.2 Results

The initial programwas entirelywritten in FORTRAN77, and thanks to the application
of change-driven development it was possible to generate an up-to-date Fortran 90
version (see Fig. 14, where source code comments have not been included in order
to make easier the visual comparison). This process was conducted almost entirely
through the application of automated source code transformation integrated in its
entirety within a development tool implemented as refactorings. This process has
been conducted by 10 iterations out of which 7 are fully implemented and the other 3
are naturally derived from the CDD utilization.

The remarkable aspect about this source code example is the fact that a new edition
of the bookwas released in 2003 by the authors [21] inwhich exactly the same example
was presented, but in this edition the authors changed it to Fortran 90. The Fortran
90 version provided by the authors in the new edition of the book is almost the same
as that in Fig. 14, which was generated as a sequence of CDD iterations/source code
changes.

123

www.manaraa.com

Change-driven development for scientific software 2249

FORTRAN 77

PROGRAM FIRST
DATA N/25/ , H/1 .0/ , X/0.5/
F = SIN(X)
G = COS(X)
DO 2 I = 1 ,N
H = 0.25∗H
D = SIN(X + H) − F
Q = D/H
E = ABS(G − Q)
PRINT ∗ ,H,D,Q,E

2 CONTINUE
STOP
END

Fortran 90 obtained by CDD

program FIRST
imp l i c i t none
r e a l : : d , e , f , g , h , q , x
i n t e g e r : : i , n
parameter (n = 25)
x=0.5
h=1.0
f = SIN(x)
g = COS(x)
do i = 1 ,n

h = 0.25∗h
d = SIN(x + h) − f
q = d/h
e = ABS(g − q)
p r i n t ∗ ,h , d , q , e

end do
end program FIRST

Fig. 14 Initial version versus resulting version

6 Second case study, including parallelization

This case study is based on a programwhich estimates an integral by using an averaging
technique. The function to be integrated is:

f (x) = 50

(pi ∗ (2500 ∗ x2 + 1))

from http://people.sc.fsu.edu/~jburkardt/f77_src/quad_serial/quad_serial.html.
Given that the focus is on parallelization with OpenMP [64], it has been decided

to collect performance data of the initial version, so that it will be later available for
performance analysis comparison. The performance data will be part of the data to
be collected and used at least in the verification CDD phase. Thus, the next section
will explain several simple steps to have an IDE project with this (legacy) code, for
establishing an initial versionwithwhich performance data aswell as numerical results
will be collected.

6.1 Program install and profile

Theprogram tobeused canbe considered as legacy codebecause it fitswith the features
described in the Legacy code definitions. Once source code has been downloaded, the
Photran IDE along with PhotranLint (developed in this research work), will be the
tool to carry out every step of each CDD iteration. Git has been used as control
version software by using the eGit plug-in. Actually, the same environment used in
the previous example/case study. A Fortran project is created within the Photran IDE:
source code is loaded into the project. Once all the program files are loaded, some
required compiler and linker options are set, as well as setting the version control
in the IDE. Once all these steps were performed the program will be compiled for

123

http://people.sc.fsu.edu/~jburkardt/f77_src/quad_serial/quad_serial.html

www.manaraa.com

2250 M. Méndez, F. G. Tinetti

Fig. 15 Compilation results of Quad.f program

Fig. 16 Execution program results

the first time. Figure 15 shows the IDE summary for the project compilation. Then,
the execution step is performed in order to obtain the program results as well as the
execution profile. The program output is shown in Fig. 16, which does not seem to
have any runtime/numerical error.

As amatter of fact, this example has been selected because the programmer provided
the original output results. In general, comparing program outputs can be made with

123

www.manaraa.com

Change-driven development for scientific software 2251

Original Execution
—————————————–

14 December 2011 8:28:12.640 AM

QUAD:
FORTRAN77 version
Estimate the integral of f(x) from A to B.
f(x) = 50 / (pi * (2500 * x * x + 1)).

A = 0.00000
B = 10.0000
N = 10000000
Exact = 0.499363

Estimate = 0.499371
Error = 0.790784E-05
Time = 0.338820

QUAD_SERIAL:
Normal end of execution.

14 December 2011 8:28:12.980 AM

Initial IDE execution
—————————————–

16 July 2015 6:25:48.719 PM

QUAD:
FORTRAN77 version
Estimate the integral of f(x) from A to B.
f(x) = 50 / (pi * (2500 * x * x + 1)).

A = 0.00000
B = 10.0000
N = 10000000
Exact = 0.499363

Estimate = 0.499371
Error = 0.790784E-05
Time = 0.308151

QUAD_SERIAL:
Normal end of execution.

16 July 2015 6:25:49.027 PM

Fig. 17 Output comparison

index % time self children called name
<spontaneous>
[1] 92.3 0.07 0.17 MAIN__ [1]
0.17 0.00 10000000/10000000 timestamp_ [2]
0.00 0.00 1/2 register_tm_clones [5]

0.17 0.00 10000000/10000000 MAIN__ [1]
[2] 65.4 0.17 0.00 10000000 timestamp_ [2]

0.02 0.00 1/1 main [4]
[3] 7.7 0.02 0.00 1 f_ [3]
0.00 0.00 1/2 register_tm_clones [5]

<spontaneous>
[4] 7.7 0.00 0.02 main [4]
0.02 0.00 1/1 f_ [3]

0.00 0.00 1/2 f_ [3]
0.00 0.00 1/2 MAIN__ [1]
[5] 0.0 0.00 0.00 2 register_tm_clones [5]

Fig. 18 Profile data

small specific programs or even with standard ones (e.g., diff). However, the program
output of this example is simple as well as text-only, so that it is possible a quick visual
comparison, as in Fig. 17. It is worth to mention that every comparison can be made
also inside the IDE, which automatically highlights differences in case they are found.

Figure 18 shows the runtime profile data, which is always easy to obtain via specific
compiler switch/es and widely available programs such as gprof.

Only two source code changes will be made in this case: (1) produce free format
source code, in order to enhance program readability; and (2) Do Loop parallelization
with OpenMP [64], in order to show parallelization capabilities as part of the CDD
already implemented in the IDE.

123

www.manaraa.com

2252 M. Méndez, F. G. Tinetti

Fig. 19 Diff view, original code on the left and transformed code on the right

6.2 Change #1: Produce free format source code

The actual version of the source code is versioned by using the IDE plug-in, as in
the previous case study. In this particular case, the profile data is considered part of
the program output, which is not necessarilly useful for this first change but for all
changes related to performance evaluation. Figure 19 shows the resulting code, where
different lines are highlighted by the IDE in order to aid the visual comparison. In
this case study, two major changes have been made: (a) comment lines are changed
to free format, i.e., preceding with the character! the source code comment, and (b)
continuation lines are determined by adding the character & at the end of the line to
be continued. As expected, the new version, in free format source code behaves as the
original one.

6.3 Change #2: Do loop parallelization with OpenMP

This change/iteration of theCDDstartswith versioning the output source code from the
previous change, as proposed in the CDDwork flow. Given that this change is devoted
to reduce runtime, the program profile (Fig. 18) is analyzed in order to find out the
specific code to parallelize. Two very well-known general guidelines are taken into
account in the analysis: (1) the profile provides the function inwhich to look for parallel
processing, and (2) Do loops are identified in order to add the corresponding OpenMP
directives. Taking into account those guidelines, the Do loop in Fig. 20 has been
identified. The automated source code transformation to parallelize the Do loop has
been implemented as “Add OpenMP Directives” in the IDE [83]. The implementation
checks every requirement to parallelize the Do loop by performing a set of analysis
on the source code using the AST. If the Do loop can be parallelized, the OpenMP
directives are automatically included in the code and the results are shown to the
programmer, as in Fig. 21.

More specifically, Fig. 22 shows the source code before and after the change, where
it is possible to identify the OpenMP directives automatically inserted by the tool in
capital letters. Currently, the tool is able to identify many data dependences as well

123

www.manaraa.com

Change-driven development for scientific software 2253

do i = 1 , n
x = ((n − i) ∗ a + (i − 1) ∗ b) / (n − 1)
t o t a l = t o t a l + f (x)
end

Fig. 20 Do loop to be parallelized

Fig. 21 Diff view for the Do loop parallelization with OpenMP

Code Before
—————————————–

total = 0.0D+00

do i = 1, n
x = ((n-i)*a+(i-1)*b)/(n-1)
total = total + f (x)
end do

Code After
—————————————–

total = 0.0D+00

!$OMP PARALLEL DO &
!$OMP SHARED(b,a,n) &
!$OMP PRIVATE(x,i) &
!$OMP REDUCTION(+:total)

do i = 1, n
x = ((n-i)*a+(i-1)*b)/(n-1)
total = total + f (x)
end do
!$OMP END PARALLEL DO

Fig. 22 Automated source code transformation: OpenMP Do loop parallelization

as some reduction variables. Once this source code change has been made and set
the specific OpenMP compiler and linker options (in the IDE, as usual), the program
will be able to run in parallel. This particular example was run in a dual processor
computer, and Fig. 23 shows the diff view comparing sequential and parallel output
runs.

The parallel runtime was 0.102887s, while the sequential runtime was 0.320313s,
thus obtaining an improvement of about 33%, and the numerical results are the same.
It is worth mentioning that the parallel version has been produced by the IDE by
following a few and well-known and simple performance guidelines.

123

www.manaraa.com

2254 M. Méndez, F. G. Tinetti

Fig. 23 Diff view between serial and parallel results

7 Conclusion and further work

In this research work, change-driven development (CDD) has been presented as a
new development process to maintain Scientific Software. This new development
process has been adopted under the hypothesis that software development is based on
transforming and changing programs. More specifically, CDD is funded on:

– Change as a unit of work.
– Integrated Development Tools.
– An iterative and incremental approach.

Even thoughCDDhas been initially intended to be applied on already existent (legacy)
software, building software form nothing is considered an exceptional occurrence
in which the transformation consists in starting from scratch. Many of the current
supercomputing software is actually Fortran legacy software, and this the main reason
of the current proposal being focused on Fortran.

An entire cycle has been designed for CDD and a proposed work flow has been
applied and performed on two study cases. A FORTRAN77 program has been updated
into a Fortran 90 version by applying CDD almost entirely by performing automated
source code transformations, most of them implemented in the Photran IDE. It has
been proven that making use of such transformations the source code has evolved into
a more modern version of itself. Also, a serial program has been parallelized using
CDD, improving its performance about 33% on a dual processor computer.

Further work includes adding more support to Fortran programmers as well as
extending the application range of CDD to software other than scientific software. In
the latter case, the proposedmethodology could be improved so that it can be exploited
by the software industry in general. Adding further case studies could provide new
insights in the many details involved in legacy software. It is also essential to pro-
vide and gather information on the utilization of CCD by programmers, building and
applying metrics along this development process. Experience should be contributed
to Integrate CDD to other IDEs due to the fact that development tools are paramount
to the whole proposed process.

123

www.manaraa.com

Change-driven development for scientific software 2255

References

1. American National Standards Institute and Computer and Business Equipment Manufacturers Associ-
ation (1992) American National Standard for programming language, FORTRAN—extended: ANSI
X3.198-1992: ISO/ IEC 1539: 1991 (E). American National Standards Institute

2. ANSI FORTRAN. X3. 9-1966. (1966) American National Standards Institute Incorporated, NewYork,
p 40

3. Arnold RS (1989) Software restructuring. Proc IEEE 77(4):607–617
4. Backus J (1978) The history of Fortran I, II, and III. ACM SIGPLAN Not 13(8):165–180
5. Baker BS (1977) An algorithm for structuring flowgraphs. J ACM (JACM) 24(1):98–120
6. Balmer DW, Paul RJ (1986) Casm-the right environment for simulation. J Oper Res Soc 37:443–452
7. Basicevic I, Jovanovic S, Drapsin B, Popovic M, Vrtunski V (2009) An approach to parallelization of

legacy software ECBS-EERC ’09 Proceedings of the 2009 First IEEEEastern European Conference on
the Engineering of Computer Based Systems, Novi Sad, Serbia, pp 42–48. ISBN: 978-0-7695-3759-7

8. Basili VR, Cruzes D, Carver JC, Hochstein LM, Hollingsworth JK, Zelkowitz MV, Shull F (2008)
Understanding the high-performance-computing community

9. Basili VR, Turner AJ (1975) Iterative enhancement: a practical technique for software development.
Softw Eng IEEE Trans 4:390–396

10. Beck K, Beedle M, van BennekumA, Cockburn A, CunninghamW, Fowler M, Grenning J, Highsmith
J, Hunt A, Jeffries R, Jon K, Brian M, Martin RC, Steve M, Ken S, Jeff S (2001) The Agile Manifesto.
Technical report, The Agile Alliance

11. Benington HD (1983) Production of large computer programs. IEEE Ann Hist Comput 5(4):350–361
12. BoehmBW(1975)The high cost of software. Practical strategies for developing large software systems,

pp 3–15
13. Boehm B (2002) Get ready for agile methods, with care. Computer 35(1):64–69
14. Booch G (2005) The complexity of programming models. Keynote talk at AOSD, pp 14–18
15. Brooks FP Jr, Blaauw GA, Buchholz W (1959) Processing data in bits and pieces. IRE Trans Electron

Comput 8(2):118–124
16. Brooks FP (1987) No silver bullet: essence and accidents of software engineering. IEEE Comput

20(4):10–19
17. Burks AW (1980) From ENIAC to the Stored-Program Computer. In: Metropolis N (ed) Two Revo-

lutions in Computers History of Computing in the Twentieth Century, Academic Press, pp 311–344.
ISBN: 0124916503

18. Canning RG (1972) That maintenance iceberg. EDP Anal 10(10):1–14
19. Carver JC, Kendall RP, Squires SE, Post DE (2007) Software development environments for scientific

and engineering software: a series of case studies. In: Software Engineering, 2007. ICSE 2007. 29th
International Conference on IEEE, pp 550–559

20. Carver JC, Hochstein L, Kendall RP, Nakamura T, Zelkowitz MV, Basili VR, Post DE (2006) Obser-
vations about software development for high end computing. CTWatch Q 2(4A):33–37

21. Cheney W, Kincaid D (1985) Numerical mathematics and computing. Cengage Learn
22. Chen N, Overbey JL (2013) Photran developer’s guide. Part II: specialized topics
23. Chikofsky EJ, Cross II JH (1990) Reverse engineering and design recovery: a taxonomy. IEEE Softw

7(1):13–17
24. D’Ambros M (2008) Supporting software evolution analysis with historical dependencies and defect

information. In: Software Maintenance, 2008. ICSM 2008. IEEE International Conference on IEEE,
pp 412–415

25. de Balbine G (1975) Better manpower utilization using automatic restructuring. In: Proceedings of the
May 19–22, 1975, National Computer Conference and Exposition, AFIPS ’75. ACM, New York, NY,
pp 319–327

26. Dederick LS (1940) Themathematics of exterior ballistic computations. AmMathMon 47(9):628–634
27. D’Hollander EH, Zhang F, Wang Q (1998) The fortran parallel transformer and its programming

environment. Inf Sci 106(3):293–317
28. Easterbrook SM, Johns TC (2009) Engineering the software for understanding climate change. Comput

Sci Eng 11(6):65–74
29. Eastwood A (1993) Firm fires shots at legacy systems. Comput Can 19(2):17
30. Edwards PN (2001)A brief history of atmospheric general circulationmodeling. Int Geophys 70:67–90

123

www.manaraa.com

2256 M. Méndez, F. G. Tinetti

31. Eigenmann R, Hoeflinger J, Jaxon G, Li Z, Padua D (1991) Restructuring fortran programs for cedar.
In: Proceedings of the 1991 International Conference on Parallel Processing, pp 57–66

32. Erlikh L (2000) Leveraging legacy system dollars for e-business. IT Prof 2(3):17–23
33. FowlerM, BeckK, Brant J, OpdykeW, Roberts D (1999) Refactoring: improving the design of existing

code. Addison-Wesley, Boston
34. Gomez JE (1979) An interactive Fortran structuring aid. In: Proceedings of the 4th International

Conference on Software Engineering. IEEE Press, pp 241–244
35. Gorla N (1991) Techniques for application software maintenance. Inf Softw Technol 33(1):65–73
36. Griswold WG, Notkin D (1993) Automated assistance for program restructuring. ACM Trans Softw

Eng Methodol (TOSEM) 2(3):228–269
37. Hannay JE,MacLeod C, Singer J, Langtangen HP, Pfahl D,Wilson G (2009) How do scientists develop

and use scientific software? In: Proceedings of the 2009 ICSE workshop on software engineering for
computational science and engineering. IEEE Computer Society, pp 1–8

38. Horowitz E (1975) Fortran can it be structured-should it be? Computer 8(6):30–37
39. Huff S (1990) Information systems maintenance. Bus Q 55(1):30–32
40. IEEE (1999) IEEE Standard for Software Maintenance, IEEE Std., vol 2. IEEE Press, pp 1219–1998
41. ISO (2006) International Standard—ISO/IEC 14764 IEEE Std 14764-2006. ISO/IEC 14764:2006 (E)

IEEE Std 14764-2006 Revision of IEEE Std 1219-1998), pp 1–46
42. Johnson RE (2010) Software development is program transformation. In: Proceedings of the FSE/SDP

workshop on future of software engineering research. ACM, pp 177–180
43. Karp AH (1987) Programming for parallelism. Computer 20(5):43–57
44. Kelly DF (2007) A software chasm: software engineering and scientific computing. Softw IEEE

24(6):119–120
45. Kendall R, Carver JC, Fisher D, Henderson D, Mark A, Post D, Rhoades CE, Squires S (2008)

Development of a weather forecasting code: a case study. IEEE Softw 25(4):59–65
46. Kontogiannis K, Patil P (1999) Evidence driven object identification in procedural code. In: Software

Technology and Engineering Practice, 1999. STEP’99. Proceedings, IEEE, pp 12–21
47. Lammel R, Verhoef C (2001) Cracking the 500-language problem. IEEE Softw 18(6):78–88
48. LarmanC,BasiliVR (2003) Iterative and incremental development: a brief history.Computer 36(6):47–

56
49. Lee G, Kruskal CP, Kuck DJ (1985) An empirical study of automatic restructuring of nonnumerical

programs for parallel processors. IEEE Trans Comput 100(10):927–933
50. Lehman MM (1978) Laws of program evolution-rules and tools for programming management
51. Lehman MM, Ramil JF, Wernick PD, Perry DE, Turski WM (1997) Metrics and laws of software

evolution-the nineties view. In: Software metrics symposium, 1997. Proceedings, Fourth International,
IEEE, pp 20–32

52. Lehman MM (1980) On understanding laws, evolution, and conservation in the large-program life
cycle. J Syst Softw 1:213–221

53. Lientz BP, Swanson EB, Tompkins GE (1978) Characteristics of application software maintenance.
Commun ACM 21(6):466–471

54. Lynch P (2008) The origins of computer weather prediction and climate modeling. J Comput Phys
227(7):3431–3444

55. McKee JR (1984)Maintenance as a function of design. In: Proceedings of the July 9–12, 1984,National
Computer Conference and Exposition. ACM, pp 187–193

56. Méndez M (2016) Aplicaciones del cómputo científico: mantenimiento del software heredado. PhD
thesis, Facultad de Informática

57. MéndezM,Overbey J,GarridoA,Tinetti F, JohnsonR (2010)ACatalog and twopossible classifications
of Fortran refactorings. Technical report

58. Méndez M, Tinetti FG, Overbey JL (2014) Climate models: challenges for fortran development tools.
In: Proceedings of the 2nd international workshop on software engineering for high performance
computing in computational science and engineering. IEEE Press, pp 6–12

59. Mens T, Tourwé T (2004) A survey of software refactoring. IEEE Trans Softw Eng 30(2):126–139
60. Metcalf M (2011) The seven ages of Fortran. J Comput Sci Technol 11(1):1–8
61. Moad J (1990) Maintaining the competitive edge. Datamation 36(4):61
62. Morris C, Segal J (2009) Some challenges facing scientific software developers: the case of molecular

biology. In: e-Science, 2009. e-Science’09. Fifth IEEE International Conference on IEEE, pp 216–222
63. Nicholas C, Overbey JL (2013) Photran developer’s guide. General information, Part I

123

www.manaraa.com

Change-driven development for scientific software 2257

64. OpenMPArchitecture ReviewBoard (2015) OpenMP application programming interface. http://www.
openmp.org/wp-content/uploads/openmp-4.5.pdf

65. Overbey JL, Negara S, Johnson RE (2009) Refactoring and the evolution of Fortran. In: 2nd Interna-
tional workshop on software engineering for computational science and engineering (SECSE’09)

66. Overbey JL, Xanthos S, Johnson R, Foote B (2005) Refactorings for Fortran and high-performance
computing. In SE-HPCS ’05: Proceedings of the second international workshop on software engineer-
ing for high performance computing system applications. ACM, New York, NY, pp 37–39

67. Overbey JL, Negara S, Johnson RE (2009) Refactoring and the evolution of Fortran. Urbana 51:61801
68. Overbey J, Rasmussen C (2005) Instant IDEs: supporting new languages in the CDT. In: Proceedings

of the 2005 OOPSLA workshop on Eclipse technology exchange. ACM, p 79
69. Pipitone J, Easterbrook S (2012) Assessing climate model software quality: a defect density analysis

of three models. Geosci Model Dev Discuss 5(1):347–382
70. Polychronopoulos CD (1988) Automatic restructuring of Fortran programs for parallel execution.

Springer, NewYork
71. Port O et al (1988) The software trap-automate or else. Bus Week 3051(9):142–154
72. Ricardo M, Braunschweig F, Leitao P, Neves R, Martins F, Santos A (2000) Mohid 2000, a coastal

integrated object oriented model. Hydraulic engineering software VIII. WIT Press, Southampton
73. Riggs R (1969) Computer systems maintenance. Datamation 15(11):227
74. Rope C (2007) Eniac as a stored-program computer: a new look at the old records. IEEE Ann Hist

Comput 29(4):82–87
75. Sammet JE,Garfunkel J (1985) Summary of changes inCobol, 1960–1985.AnnHistComput 7(4):342–

347
76. Schmidberger M, Brugge B (2012) Need of software engineering methods for high performance

computing applications. In: Parallel and distributed computing (ISPDC), 2012 11th international sym-
posium on IEEE, pp 40–46

77. Seacord RC, Plakosh D, Lewis GA (2003) Modernizing legacy systems: software technologies, engi-
neering process and business practices. Addison-Wesley Longman Publishing Co., Inc., Boston, MA

78. Segal J (2008) Models of scientific software development. In: SECSE 08, first international workshop
on software engineering in computational science and engineering, Leipzig

79. Segal J (2008) Scientists and software engineers: a tale of two cultures. In: Proceedings of the psy-
chology of programming interest group, PPIG 08, pp 10–12

80. Segal J (2009) Some challenges facing software engineers developing software for scientists. In: 2nd
International software engineering for computational scientists and engineers workshop (SECSE ’09),
ICSE 2009 Workshop, Vancouver, pp 9–14

81. ShawMet al (2004)NationalResearchCouncilComputer Science:Reflections on theField,Reflections
from the Field National Academies Press. ISBN-10:0309093015

82. Swanson EB (1976) The dimensions of maintenance. In: Proceedings of the 2nd International Confer-
ence on Software Engineering, IEEE. Computer Society Press, pp 492–497

83. Tinetti FG, Méndez M (2012) Fortran legacy software: source code update and possible parallelisation
issues. In: ACM SIGPLAN Fortran Forum, vol 31. ACM, pp 5–22

84. Tinetti FG, Méndez M, Giusti AD (2013) Restructuring fortran legacy applications for parallel com-
puting in multiprocessors. J Supercomput 64(2):638–659

85. Triolet R, Feautrier P, Irigoin F (1986) Automatic parallelization of fortran programs in the presence
of procedure calls. In: ESOP 86, Springer, pp 210–222

86. Tukey JW (1958) The teaching of concrete mathematics. Am Math Mon 65(1):1–9
87. vonNeumann J (1947)Chapter 2: ThePoint Source Solution.WaveB,BetheHA, FuchsK,Hirschfelder

JO, Magee JL, Peierls RE, von Neumann J (eds) Los Alamos Scientific laboratory Report LA-2000
88. Ware MP, Wilkie FG, Shapcott M (2007) The application of product measures in directing software

maintenance activity. J Softw Maint Evol Res Pract 19(2):133–154
89. Wilson GV (2006) Where’s the real bottleneck in scientific computing? Am Sci 94(1):5
90. Zelkowitz MV, Shaw AC, Gannon JD (1979) Principles of Software Engineering and Design Prentice

Hall Professional Technical Reference. ISBN:013710202X

123

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

www.manaraa.com

Journal of Supercomputing is a copyright of Springer, 2017. All Rights Reserved.

	Change-driven development for scientific software
	Abstract
	1 Introduction
	2 Theoretical focus
	2.1 Related works
	2.1.1 Software maintenance numbers

	2.2 Source code restructuring
	2.2.1 Restructuring or refactoring Fortran source code

	3 The change-driven development process
	3.1 From the unknown to the well known
	3.2 Change-driven development process

	4 The four stages
	4.1 Comprehension stage
	4.2 Transformation stage
	4.3 Verification stage
	4.4 Feedback stage
	4.5 The work flow
	4.5.1 The establishment of an initial version of source code
	4.5.2 The transformation source code
	4.5.3 The verification of the obtained source code
	4.5.4 The validation of numerical results
	4.5.5 The acceptance/rejection of the applied change based on numerical results

	5 First case study
	5.1 Process application
	5.1.1 Change #1: Produce free format source code
	5.1.2 Change #2: Use lower-case Fortran statements
	5.1.3 Change #3: Use lower-case identifiers
	5.1.4 Change #4: Introduce implicit none
	5.1.5 Change #5: Replace old style DO loops
	5.1.6 Change #6: Remove unreferenced labels
	5.1.7 Change #7: Remove unnecessary statements
	5.1.8 Change #8: Add identifier to end program
	5.1.9 Change #9: Generate variable/s from DATA in the main program
	5.1.10 Change #10: Generate parameter/s from DATA

	5.2 Results

	6 Second case study, including parallelization
	6.1 Program install and profile
	6.2 Change #1: Produce free format source code
	6.3 Change #2: Do loop parallelization with OpenMP

	7 Conclusion and further work
	References

